Most sports seem meaningless when cut back to base level but many served a purpose back in the day. In pole vaulting, for instance, the sport evolved in Europe from people trying to cross from one side of a canal to the other.
In the late 1800s, competitions popped up, and in 1896, it was included in the first modern Olympics in Athens. Vaulters originally used bamboo sticks with sharp points which dug into the grass (there were no holes, or vault boxes back then) and, once they'd vaulted over the bar, landed back on the grass.
The winner at the first Olympics achieved a height of about 3.2m - today's world record is 6.16m, set by Frenchman Renaud Lavillenie in 2014. There's a fair bit of science behind pole vaulting in both the technique and materials used.
In terms of equipment, the poles have evolved tremendously. Metal poles, which were lighter and stronger than bamboo, became popular after World War II (by this stage, the world record was about 4.7m) and these were eventually replaced by fibreglass.
Today, athletes use a pole made from carbon fibre and fibreglass composite which wastes very little energy when it bends and offers a good strength-to-weight ratio.
The height and weight of the athlete makes a difference and poles vary accordingly. A heavier athlete needs a stiffer pole, but it still needs to bend as much as one used by a lighter athlete. The weight of the pole has decreased over time - although they are much stronger - and this has allowed athletes to run faster, a crucial element for a successful vaulter.
This is where physics come in so, even if you flunked NCEA physics, hang in there. It's all about kinetic energy (KE) and potential energy (PE).