The car service Uber needs two basic pieces of information to determine what a trip should cost you: how many passengers are in search of a ride, and how many drivers are on the road offering them. Uber's pricing, which is also influenced by discounts designed to lure new riders and drive growth, primarily fluctuates with changes along these two axes, supply and demand.
Now consider another asset in the peer-to-peer economy — an Airbnb rental. What should you charge for one? The answer turns on a much longer list of variables beyond how many homes are available and who wants them. Is it a townhome, a penthouse, a cabin, a castle, a teepee, a yurt? A single room or a whole home? The bed: double or queen? The view: riverfront or city skyline? The Left Bank or right one? How gourmet is the kitchen? Is there a subway stop nearby or off-street parking? Are the Grateful Dead in town? Or the cherry blossoms blooming?
What's worth more: A studio in Adams Morgan in Washington with half a dozen bars nearby, or a single bedroom in a Capitol Hill Victorian with views of the Capitol dome?
The housing market and hotel industry wrestle with some similar questions in determining the value of a property. But Airbnb's puzzle sits at the incredibly complex intersection of the two, where every quasi-hotel room has the individual character of a single home, and every home has the seasonal fluctuations of the tourist industry.
Of course, one way to answer this question, if you rent your home on Airbnb, is to test a bunch of rates until you finally figure out what the market will bear. But Airbnb, a certain breed of big-data-loving tech company, wants to offer precise guidance to more than a million hosts. And that means cramming all of these questions into an algorithm.